Classic leetcode-style problems
Classic leetcode-style problems
nums
and an integer target
, return indices of the two numbers such that they add up to target
.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
prices
where prices[i]
is the price of a given stock on the ith
day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0
.
Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 104
nums
, return true
if any value appears at least twice in the array, and return false
if every element is distinct.
Example 1:
Input: nums = [1,2,3,1]
Output: true
Example 2:
Input: nums = [1,2,3,4]
Output: false
Example 3:
Input: nums = [1,1,1,3,3,4,3,2,4,2]
Output: true
Constraints:
1 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
, return an array answer
such that answer[i]
is equal to the product of all the elements of nums
except nums[i]
.
The product of any prefix or suffix of nums
is guaranteed to fit in a 32-bit integer.
You must write an algorithm that runs in O(n)
time and without using the division operation.
Example 1:
Input: nums = [1,2,3,4]
Output: [24,12,8,6]
Example 2:
Input: nums = [-1,1,0,-3,3]
Output: [0,0,9,0,0]
Constraints:
2 <= nums.length <= 105
-30 <= nums[i] <= 30
nums
is guaranteed to fit in a 32-bit integer.O(1)
extra space complexity? (The output array does not count as extra space for space complexity analysis.)nums
, find the subarray with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.
Example 2:
Input: nums = [1]
Output: 1
Explanation: The subarray [1] has the largest sum 1.
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.nums
, find a subarray that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
Example 1:
Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
nums
is guaranteed to fit in a 32-bit integer.n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,2,4,5,6,7]
might become:
[4,5,6,7,0,1,2]
if it was rotated 4
times.[0,1,2,4,5,6,7]
if it was rotated 7
times.[a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2]
Output: 0
Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17]
Output: 11
Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
are unique.nums
is sorted and rotated between 1
and n
times.nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
are unique.nums
is an ascending array that is possibly rotated.-104 <= target <= 104
[nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
height
of length n
. There are n
vertical lines drawn such that the two endpoints of the ith
line are (i, 0)
and (i, height[i])
.
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums
are unique.O(1)
extra space complexity and O(n)
runtime complexity?m x n
grid. The robot is initially located at the top-left corner (i.e., grid[0][0]
). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.
Given the two integers m
and n
, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109
.
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1 <= m, n <= 100
nums
. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position.
Return true
if you can reach the last index, or false
otherwise.
Example 1:
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 105
nums
, return the length of the longest consecutive elements sequence.
You must write an algorithm that runs in O(n)
time.
Example 1:
Input: nums = [100,4,200,1,3,2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]
. Therefore its length is 4.
Example 2:
Input: nums = [0,3,7,2,5,8,4,6,0,1]
Output: 9
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
intervals
where intervals[i] = [starti, endi]
represent the start and the end of the ith
interval and intervals
is sorted in ascending order by starti
. You are also given an interval newInterval = [start, end]
that represents the start and end of another interval.
Insert newInterval
into intervals
such that intervals
is still sorted in ascending order by starti
and intervals
still does not have any overlapping intervals (merge overlapping intervals if necessary).
Return intervals
after the insertion.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
Constraints:
0 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 105
intervals
is sorted by starti
in ascending order.newInterval.length == 2
0 <= start <= end <= 105
intervals
where intervals[i] = [starti, endi]
, merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.
Example 1:
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
Example 2:
Input: intervals = [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.
Constraints:
1 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 104
m x n
integer matrix matrix
, if an element is 0
, set its entire row and column to 0
's.
You must do it in place.
Example 1:
Input: matrix = [[1,1,1],[1,0,1],[1,1,1]]
Output: [[1,0,1],[0,0,0],[1,0,1]]
Example 2:
Input: matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
Output: [[0,0,0,0],[0,4,5,0],[0,3,1,0]]
Constraints:
m == matrix.length
n == matrix[0].length
1 <= m, n <= 200
-231 <= matrix[i][j] <= 231 - 1
O(mn)
space is probably a bad idea.O(m + n)
space, but still not the best solution.m x n
matrix
, return all elements of the matrix
in spiral order.
Example 1:
Input: matrix = [[1,2,3],[4,5,6],[7,8,9]]
Output: [1,2,3,6,9,8,7,4,5]
Example 2:
Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
Output: [1,2,3,4,8,12,11,10,9,5,6,7]
Constraints:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 10
-100 <= matrix[i][j] <= 100
preorder
and inorder
where preorder
is the preorder traversal of a binary tree and inorder
is the inorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
Example 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
Constraints:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
and inorder
consist of unique values.inorder
also appears in preorder
.preorder
is guaranteed to be the preorder traversal of the tree.inorder
is guaranteed to be the inorder traversal of the tree.m x n
board
of characters and a list of strings words
, return all words on the board.
Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example 1:
Input: board = [[ "o ", "a ", "a ", "n "],[ "e ", "t ", "a ", "e "],[ "i ", "h ", "k ", "r "],[ "i ", "f ", "l ", "v "]], words = [ "oath ", "pea ", "eat ", "rain "]
Output: [ "eat ", "oath "]
Example 2:
Input: board = [[ "a ", "b "],[ "c ", "d "]], words = [ "abcb "]
Output: []
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
is a lowercase English letter.1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i]
consists of lowercase English letters.words
are unique.n
sorted in ascending order is rotated between 1
and n
times. For example, the array nums = [0,1,2,4,5,6,7]
might become:
[4,5,6,7,0,1,2]
if it was rotated 4
times.[0,1,2,4,5,6,7]
if it was rotated 7
times.[a[0], a[1], a[2], ..., a[n-1]]
1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
.
Given the sorted rotated array nums
of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
Example 1:
Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Example 2:
Input: nums = [4,5,6,7,0,1,2]
Output: 0
Explanation: The original array was [0,1,2,4,5,6,7] and it was rotated 4 times.
Example 3:
Input: nums = [11,13,15,17]
Output: 11
Explanation: The original array was [11,13,15,17] and it was rotated 4 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
are unique.nums
is sorted and rotated between 1
and n
times.nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
You must write an algorithm with O(log n)
runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000
-104 <= nums[i] <= 104
nums
are unique.nums
is an ascending array that is possibly rotated.-104 <= target <= 104
nums
, return the length of the longest strictly increasing subsequence.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
O(n log(n))
time complexity?a
and b
, return the sum of the two integers without using the operators +
and -
.
Example 1:
Input: a = 1, b = 2
Output: 3
Example 2:
Input: a = 2, b = 3
Output: 5
Constraints:
-1000 <= a, b <= 1000
-3
.32
.n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
's in the binary representation of i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums
are unique.O(1)
extra space complexity and O(n)
runtime complexity?-3
and the output represents the signed integer -1073741825
.32
int
) and a list (List[Node]
) of its neighbors.
class Node {
public int val;
public List neighbors;
}
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Constraints:
[0, 100]
.1 <= Node.val <= 100
Node.val
is unique for each node.numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
[0, 1]
, indicates that to take course 0
you have to first take course 1
.true
if you can finish all courses. Otherwise, return false
.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
m x n
rectangular island that borders both the Pacific Ocean and Atlantic Ocean. The Pacific Ocean touches the island's left and top edges, and the Atlantic Ocean touches the island's right and bottom edges.
The island is partitioned into a grid of square cells. You are given an m x n
integer matrix heights
where heights[r][c]
represents the height above sea level of the cell at coordinate (r, c)
.
The island receives a lot of rain, and the rain water can flow to neighboring cells directly north, south, east, and west if the neighboring cell's height is less than or equal to the current cell's height. Water can flow from any cell adjacent to an ocean into the ocean.
Return a 2D list of grid coordinates result
where result[i] = [ri, ci]
denotes that rain water can flow from cell (ri, ci)
to both the Pacific and Atlantic oceans.
Example 1:
Input: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
Output: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]
Explanation: The following cells can flow to the Pacific and Atlantic oceans, as shown below:
[0,4]: [0,4] -> Pacific Ocean
[0,4] -> Atlantic Ocean
[1,3]: [1,3] -> [0,3] -> Pacific Ocean
[1,3] -> [1,4] -> Atlantic Ocean
[1,4]: [1,4] -> [1,3] -> [0,3] -> Pacific Ocean
[1,4] -> Atlantic Ocean
[2,2]: [2,2] -> [1,2] -> [0,2] -> Pacific Ocean
[2,2] -> [2,3] -> [2,4] -> Atlantic Ocean
[3,0]: [3,0] -> Pacific Ocean
[3,0] -> [4,0] -> Atlantic Ocean
[3,1]: [3,1] -> [3,0] -> Pacific Ocean
[3,1] -> [4,1] -> Atlantic Ocean
[4,0]: [4,0] -> Pacific Ocean
[4,0] -> Atlantic Ocean
Note that there are other possible paths for these cells to flow to the Pacific and Atlantic oceans.
Example 2:
Input: heights = [[1]]
Output: [[0,0]]
Explanation: The water can flow from the only cell to the Pacific and Atlantic oceans.
Constraints:
m == heights.length
n == heights[r].length
1 <= m, n <= 200
0 <= heights[r][c] <= 105
n
nodes labeled from 0
to n - 1
. You are given an integer n and a list of edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between nodes ai
and bi
in the graph.
Return true
if the edges of the given graph make up a valid tree, and false
otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
n
nodes. You are given an integer n
and an array edges
where edges[i] = [ai, bi]
indicates that there is an edge between ai
and bi
in the graph.
Return the number of connected components in the graph.
Example 1:
Input: n = 5, edges = [[0,1],[1,2],[3,4]]
Output: 2
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]]
Output: 1
Constraints:
1 <= n <= 2000
1 <= edges.length <= 5000
edges[i].length == 2
0 <= ai <= bi < n
ai != bi
int
) and a list (List[Node]
) of its neighbors.
class Node {
public int val;
public List neighbors;
}
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Constraints:
[0, 100]
.1 <= Node.val <= 100
Node.val
is unique for each node.numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
[0, 1]
, indicates that to take course 0
you have to first take course 1
.true
if you can finish all courses. Otherwise, return false
.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
m x n
rectangular island that borders both the Pacific Ocean and Atlantic Ocean. The Pacific Ocean touches the island's left and top edges, and the Atlantic Ocean touches the island's right and bottom edges.
The island is partitioned into a grid of square cells. You are given an m x n
integer matrix heights
where heights[r][c]
represents the height above sea level of the cell at coordinate (r, c)
.
The island receives a lot of rain, and the rain water can flow to neighboring cells directly north, south, east, and west if the neighboring cell's height is less than or equal to the current cell's height. Water can flow from any cell adjacent to an ocean into the ocean.
Return a 2D list of grid coordinates result
where result[i] = [ri, ci]
denotes that rain water can flow from cell (ri, ci)
to both the Pacific and Atlantic oceans.
Example 1:
Input: heights = [[1,2,2,3,5],[3,2,3,4,4],[2,4,5,3,1],[6,7,1,4,5],[5,1,1,2,4]]
Output: [[0,4],[1,3],[1,4],[2,2],[3,0],[3,1],[4,0]]
Explanation: The following cells can flow to the Pacific and Atlantic oceans, as shown below:
[0,4]: [0,4] -> Pacific Ocean
[0,4] -> Atlantic Ocean
[1,3]: [1,3] -> [0,3] -> Pacific Ocean
[1,3] -> [1,4] -> Atlantic Ocean
[1,4]: [1,4] -> [1,3] -> [0,3] -> Pacific Ocean
[1,4] -> Atlantic Ocean
[2,2]: [2,2] -> [1,2] -> [0,2] -> Pacific Ocean
[2,2] -> [2,3] -> [2,4] -> Atlantic Ocean
[3,0]: [3,0] -> Pacific Ocean
[3,0] -> [4,0] -> Atlantic Ocean
[3,1]: [3,1] -> [3,0] -> Pacific Ocean
[3,1] -> [4,1] -> Atlantic Ocean
[4,0]: [4,0] -> Pacific Ocean
[4,0] -> Atlantic Ocean
Note that there are other possible paths for these cells to flow to the Pacific and Atlantic oceans.
Example 2:
Input: heights = [[1]]
Output: [[0,0]]
Explanation: The water can flow from the only cell to the Pacific and Atlantic oceans.
Constraints:
m == heights.length
n == heights[r].length
1 <= m, n <= 200
0 <= heights[r][c] <= 105
n
nodes labeled from 0
to n - 1
. You are given an integer n and a list of edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between nodes ai
and bi
in the graph.
Return true
if the edges of the given graph make up a valid tree, and false
otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
n
nodes. You are given an integer n
and an array edges
where edges[i] = [ai, bi]
indicates that there is an edge between ai
and bi
in the graph.
Return the number of connected components in the graph.
Example 1:
Input: n = 5, edges = [[0,1],[1,2],[3,4]]
Output: 2
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]]
Output: 1
Constraints:
1 <= n <= 2000
1 <= edges.length <= 5000
edges[i].length == 2
0 <= ai <= bi < n
ai != bi
root
of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 3
Example 2:
Input: root = [1,null,2]
Output: 2
Constraints:
[0, 104]
.-100 <= Node.val <= 100
p
and q
, write a function to check if they are the same or not.
Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.
Example 1:
Input: p = [1,2,3], q = [1,2,3]
Output: true
Example 2:
Input: p = [1,2], q = [1,null,2]
Output: false
Example 3:
Input: p = [1,2,1], q = [1,1,2]
Output: false
Constraints:
[0, 100]
.-104 <= Node.val <= 104
root
of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
[1, 3 * 104]
.-1000 <= Node.val <= 1000
preorder
and inorder
where preorder
is the preorder traversal of a binary tree and inorder
is the inorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
Example 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
Constraints:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
and inorder
consist of unique values.inorder
also appears in preorder
.preorder
is guaranteed to be the preorder traversal of the tree.inorder
is guaranteed to be the inorder traversal of the tree.[0, 104]
.-1000 <= Node.val <= 1000
Trie()
Initializes the trie object.void insert(String word)
Inserts the string word
into the trie.boolean search(String word)
Returns true
if the string word
is in the trie (i.e., was inserted before), and false
otherwise.boolean startsWith(String prefix)
Returns true
if there is a previously inserted string word
that has the prefix prefix
, and false
otherwise.1 <= word.length, prefix.length <= 2000
word
and prefix
consist only of lowercase English letters.3 * 104
calls in total will be made to insert
, search
, and startsWith
.arr = [2,3,4]
, the median is 3
.arr = [2,3]
, the median is (2 + 3) / 2 = 2.5
.MedianFinder()
initializes the MedianFinder
object.void addNum(int num)
adds the integer num
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within 10-5
of the actual answer will be accepted.-105 <= num <= 105
findMedian
.5 * 104
calls will be made to addNum
and findMedian
.[0, 100]
, how would you optimize your solution?99%
of all integer numbers from the stream are in the range [0, 100]
, how would you optimize your solution?nums
, find the subarray with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.
Example 2:
Input: nums = [1]
Output: 1
Explanation: The subarray [1] has the largest sum 1.
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.k
linked-lists lists
, each linked-list is sorted in ascending order.
Merge all the linked-lists into one sorted linked-list and return it.
Example 1:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[
1->4->5,
1->3->4,
2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6
Example 2:
Input: lists = []
Output: []
Example 3:
Input: lists = [[]]
Output: []
Constraints:
k == lists.length
0 <= k <= 104
0 <= lists[i].length <= 500
-104 <= lists[i][j] <= 104
lists[i]
is sorted in ascending order.lists[i].length
will not exceed 104
.prices
where prices[i]
is the price of a given stock on the ith
day.
You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock.
Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0
.
Example 1:
Input: prices = [7,1,5,3,6,4]
Output: 5
Explanation: Buy on day 2 (price = 1) and sell on day 5 (price = 6), profit = 6-1 = 5.
Note that buying on day 2 and selling on day 1 is not allowed because you must buy before you sell.
Example 2:
Input: prices = [7,6,4,3,1]
Output: 0
Explanation: In this case, no transactions are done and the max profit = 0.
Constraints:
1 <= prices.length <= 105
0 <= prices[i] <= 104
nums
, find the subarray with the largest sum, and return its sum.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: The subarray [4,-1,2,1] has the largest sum 6.
Example 2:
Input: nums = [1]
Output: 1
Explanation: The subarray [1] has the largest sum 1.
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Explanation: The subarray [5,4,-1,7,8] has the largest sum 23.
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.nums
, find a subarray that has the largest product, and return the product.
The test cases are generated so that the answer will fit in a 32-bit integer.
Example 1:
Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Constraints:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
nums
is guaranteed to fit in a 32-bit integer.n
, return an array ans
of length n + 1
such that for each i
(0 <= i <= n
), ans[i]
is the number of 1
's in the binary representation of i
.
Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
Constraints:
0 <= n <= 105
O(n log n)
. Can you do it in linear time O(n)
and possibly in a single pass?__builtin_popcount
in C++)?n
steps to reach the top.
Each time you can either climb 1
or 2
steps. In how many distinct ways can you climb to the top?
Example 1:
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
1 <= n <= 45
coins
representing coins of different denominations and an integer amount
representing a total amount of money.
Return the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1
.
You may assume that you have an infinite number of each kind of coin.
Example 1:
Input: coins = [1,2,5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:
Input: coins = [2], amount = 3
Output: -1
Example 3:
Input: coins = [1], amount = 0
Output: 0
Constraints:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
nums
, return the length of the longest strictly increasing subsequence.
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
O(n log(n))
time complexity?text1
and text2
, return the length of their longest common subsequence. If there is no common subsequence, return 0
.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
"ace "
is a subsequence of "abcde "
.1 <= text1.length, text2.length <= 1000
text1
and text2
consist of only lowercase English characters.s
and a dictionary of strings wordDict
, return true
if s
can be segmented into a space-separated sequence of one or more dictionary words.
Note that the same word in the dictionary may be reused multiple times in the segmentation.
Example 1:
Input: s = "leetcode ", wordDict = [ "leet ", "code "]
Output: true
Explanation: Return true because "leetcode " can be segmented as "leet code ".
Example 2:
Input: s = "applepenapple ", wordDict = [ "apple ", "pen "]
Output: true
Explanation: Return true because "applepenapple " can be segmented as "apple pen apple ".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog ", wordDict = [ "cats ", "dog ", "sand ", "and ", "cat "]
Output: false
Constraints:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
and wordDict[i]
consist of only lowercase English letters.wordDict
are unique.nums
and a target integer target
, return the number of possible combinations that add up to target
.
The test cases are generated so that the answer can fit in a 32-bit integer.
Example 1:
Input: nums = [1,2,3], target = 4
Output: 7
Explanation:
The possible combination ways are:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
Note that different sequences are counted as different combinations.
Example 2:
Input: nums = [9], target = 3
Output: 0
Constraints:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
nums
are unique.1 <= target <= 1000
nums
representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 2:
Input: nums = [2,7,9,3,1]
Output: 12
Explanation: Rob house 1 (money = 2), rob house 3 (money = 9) and rob house 5 (money = 1).
Total amount you can rob = 2 + 9 + 1 = 12.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 400
nums
representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
Example 1:
Input: nums = [2,3,2]
Output: 3
Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
Example 2:
Input: nums = [1,2,3,1]
Output: 4
Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
Total amount you can rob = 1 + 3 = 4.
Example 3:
Input: nums = [1,2,3]
Output: 3
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
A-Z
can be encoded into numbers using the following mapping:
'A' -> "1 "
'B' -> "2 "
...
'Z' -> "26 "
To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, "11106 "
can be mapped into:
"AAJF "
with the grouping (1 1 10 6)
"KJF "
with the grouping (11 10 6)
(1 11 06)
is invalid because "06 "
cannot be mapped into 'F'
since "6 "
is different from "06 "
.
Given a string s
containing only digits, return the number of ways to decode it.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: s = "12 "
Output: 2
Explanation: "12 " could be decoded as "AB " (1 2) or "L " (12).
Example 2:
Input: s = "226 "
Output: 3
Explanation: "226 " could be decoded as "BZ " (2 26), "VF " (22 6), or "BBF " (2 2 6).
Example 3:
Input: s = "06 "
Output: 0
Explanation: "06 " cannot be mapped to "F " because of the leading zero ( "6 " is different from "06 ").
Constraints:
1 <= s.length <= 100
s
contains only digits and may contain leading zero(s).m x n
grid. The robot is initially located at the top-left corner (i.e., grid[0][0]
). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.
Given the two integers m
and n
, return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The test cases are generated so that the answer will be less than or equal to 2 * 109
.
Example 1:
Input: m = 3, n = 7
Output: 28
Example 2:
Input: m = 3, n = 2
Output: 3
Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1 <= m, n <= 100
s
, return the longest palindromic substring in s
.
Example 1:
Input: s = "babad "
Output: "bab "
Explanation: "aba " is also a valid answer.
Example 2:
Input: s = "cbbd "
Output: "bb "
Constraints:
1 <= s.length <= 1000
s
consist of only digits and English letters.s
, return the number of palindromic substrings in it.
A string is a palindrome when it reads the same backward as forward.
A substring is a contiguous sequence of characters within the string.
Example 1:
Input: s = "abc "
Output: 3
Explanation: Three palindromic strings: "a ", "b ", "c ".
Example 2:
Input: s = "aaa "
Output: 6
Explanation: Six palindromic strings: "a ", "a ", "a ", "aa ", "aa ", "aaa ".
Constraints:
1 <= s.length <= 1000
s
consists of lowercase English letters.root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
[1, 104]
.-231 <= Node.val <= 231 - 1
int
) and a list (List[Node]
) of its neighbors.
class Node {
public int val;
public List neighbors;
}
Test case format:
For simplicity, each node's value is the same as the node's index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Constraints:
[0, 100]
.1 <= Node.val <= 100
Node.val
is unique for each node.numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
[0, 1]
, indicates that to take course 0
you have to first take course 1
.true
if you can finish all courses. Otherwise, return false
.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
words
from the alien language's dictionary, where the strings in words
are sorted lexicographically by the rules of this new language.
Return a string of the unique letters in the new alien language sorted in lexicographically increasing order by the new language's rules. If there is no solution, return " "
. If there are multiple solutions, return any of them.
Example 1:
Input: words = [ "wrt ", "wrf ", "er ", "ett ", "rftt "]
Output: "wertf "
Example 2:
Input: words = [ "z ", "x "]
Output: "zx "
Example 3:
Input: words = [ "z ", "x ", "z "]
Output: " "
Explanation: The order is invalid, so return " "
.
Constraints:
1 <= words.length <= 100
1 <= words[i].length <= 100
words[i]
consists of only lowercase English letters.n
nodes labeled from 0
to n - 1
. You are given an integer n and a list of edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between nodes ai
and bi
in the graph.
Return true
if the edges of the given graph make up a valid tree, and false
otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
n
nodes. You are given an integer n
and an array edges
where edges[i] = [ai, bi]
indicates that there is an edge between ai
and bi
in the graph.
Return the number of connected components in the graph.
Example 1:
Input: n = 5, edges = [[0,1],[1,2],[3,4]]
Output: 2
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]]
Output: 1
Constraints:
1 <= n <= 2000
1 <= edges.length <= 5000
edges[i].length == 2
0 <= ai <= bi < n
ai != bi
nums
. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position.
Return true
if you can reach the last index, or false
otherwise.
Example 1:
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 105
intervals
where intervals[i] = [starti, endi]
, return the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Example 1:
Input: intervals = [[1,2],[2,3],[3,4],[1,3]]
Output: 1
Explanation: [1,3] can be removed and the rest of the intervals are non-overlapping.
Example 2:
Input: intervals = [[1,2],[1,2],[1,2]]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of the intervals non-overlapping.
Example 3:
Input: intervals = [[1,2],[2,3]]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
Constraints:
1 <= intervals.length <= 105
intervals[i].length == 2
-5 * 104 <= starti < endi <= 5 * 104
intervals
where intervals[i] = [starti, endi]
, return the minimum number of conference rooms required.
Example 1:
Input: intervals = [[0,30],[5,10],[15,20]]
Output: 2
Example 2:
Input: intervals = [[7,10],[2,4]]
Output: 1
Constraints:
1 <= intervals.length <= 104
0 <= starti < endi <= 106
nums
and an integer target
, return indices of the two numbers such that they add up to target
.
You may assume that each input would have exactly one solution, and you may not use the same element twice.
You can return the answer in any order.
Example 1:
Input: nums = [2,7,11,15], target = 9
Output: [0,1]
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
Example 2:
Input: nums = [3,2,4], target = 6
Output: [1,2]
Example 3:
Input: nums = [3,3], target = 6
Output: [0,1]
Constraints:
2 <= nums.length <= 104
-109 <= nums[i] <= 109
-109 <= target <= 109
nums
, return true
if any value appears at least twice in the array, and return false
if every element is distinct.
Example 1:
Input: nums = [1,2,3,1]
Output: true
Example 2:
Input: nums = [1,2,3,4]
Output: false
Example 3:
Input: nums = [1,1,1,3,3,4,3,2,4,2]
Output: true
Constraints:
1 <= nums.length <= 105
-109 <= nums[i] <= 109
s
, find the length of the longest substring without repeating characters.
Example 1:
Input: s = "abcabcbb "
Output: 3
Explanation: The answer is "abc ", with the length of 3.
Example 2:
Input: s = "bbbbb "
Output: 1
Explanation: The answer is "b ", with the length of 1.
Example 3:
Input: s = "pwwkew "
Output: 3
Explanation: The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
Constraints:
0 <= s.length <= 5 * 104
s
consists of English letters, digits, symbols and spaces.s
and t
of lengths m
and n
respectively, return the minimum window substring of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string " "
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC ", t = "ABC "
Output: "BANC "
Explanation: The minimum window substring "BANC " includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a ", t = "a "
Output: "a "
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a ", t = "aa "
Output: " "
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
and t
consist of uppercase and lowercase English letters.O(m + n)
time?s
and t
, return true
if t
is an anagram of s
, and false
otherwise.
An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.
Example 1:
Input: s = "anagram", t = "nagaram"
Output: true
Example 2:
Input: s = "rat", t = "car"
Output: false
Constraints:
1 <= s.length, t.length <= 5 * 104
s
and t
consist of lowercase English letters.nums
and an integer k
, return the k
most frequent elements. You may return the answer in any order.
Example 1:
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
k
is in the range [1, the number of unique elements in the array]
.O(n log n)
, where n is the array's size.intervals
where intervals[i] = [starti, endi]
, return the minimum number of conference rooms required.
Example 1:
Input: intervals = [[0,30],[5,10],[15,20]]
Output: 2
Example 2:
Input: intervals = [[7,10],[2,4]]
Output: 1
Constraints:
1 <= intervals.length <= 104
0 <= starti < endi <= 106
k
linked-lists lists
, each linked-list is sorted in ascending order.
Merge all the linked-lists into one sorted linked-list and return it.
Example 1:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[
1->4->5,
1->3->4,
2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6
Example 2:
Input: lists = []
Output: []
Example 3:
Input: lists = [[]]
Output: []
Constraints:
k == lists.length
0 <= k <= 104
0 <= lists[i].length <= 500
-104 <= lists[i][j] <= 104
lists[i]
is sorted in ascending order.lists[i].length
will not exceed 104
.nums
and an integer k
, return the k
most frequent elements. You may return the answer in any order.
Example 1:
Input: nums = [1,1,1,2,2,3], k = 2
Output: [1,2]
Example 2:
Input: nums = [1], k = 1
Output: [1]
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
k
is in the range [1, the number of unique elements in the array]
.O(n log n)
, where n is the array's size.arr = [2,3,4]
, the median is 3
.arr = [2,3]
, the median is (2 + 3) / 2 = 2.5
.MedianFinder()
initializes the MedianFinder
object.void addNum(int num)
adds the integer num
from the data stream to the data structure.double findMedian()
returns the median of all elements so far. Answers within 10-5
of the actual answer will be accepted.-105 <= num <= 105
findMedian
.5 * 104
calls will be made to addNum
and findMedian
.[0, 100]
, how would you optimize your solution?99%
of all integer numbers from the stream are in the range [0, 100]
, how would you optimize your solution?head
of a singly linked list, reverse the list, and return the reversed list.
Example 1:
Input: head = [1,2,3,4,5]
Output: [5,4,3,2,1]
Example 2:
Input: head = [1,2]
Output: [2,1]
Example 3:
Input: head = []
Output: []
Constraints:
[0, 5000]
.-5000 <= Node.val <= 5000
head
, the head of a linked list, determine if the linked list has a cycle in it.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next
pointer. Internally, pos
is used to denote the index of the node that tail's next
pointer is connected to. Note that pos
is not passed as a parameter.
Return true
if there is a cycle in the linked list. Otherwise, return false
.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).
Example 2:
Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.
Example 3:
Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
Constraints:
[0, 104]
.-105 <= Node.val <= 105
pos
is -1
or a valid index in the linked-list.O(1)
(i.e. constant) memory?list1
and list2
.
Merge the two lists in a one sorted list. The list should be made by splicing together the nodes of the first two lists.
Return the head of the merged linked list.
Example 1:
Input: list1 = [1,2,4], list2 = [1,3,4]
Output: [1,1,2,3,4,4]
Example 2:
Input: list1 = [], list2 = []
Output: []
Example 3:
Input: list1 = [], list2 = [0]
Output: [0]
Constraints:
[0, 50]
.-100 <= Node.val <= 100
list1
and list2
are sorted in non-decreasing order.k
linked-lists lists
, each linked-list is sorted in ascending order.
Merge all the linked-lists into one sorted linked-list and return it.
Example 1:
Input: lists = [[1,4,5],[1,3,4],[2,6]]
Output: [1,1,2,3,4,4,5,6]
Explanation: The linked-lists are:
[
1->4->5,
1->3->4,
2->6
]
merging them into one sorted list:
1->1->2->3->4->4->5->6
Example 2:
Input: lists = []
Output: []
Example 3:
Input: lists = [[]]
Output: []
Constraints:
k == lists.length
0 <= k <= 104
0 <= lists[i].length <= 500
-104 <= lists[i][j] <= 104
lists[i]
is sorted in ascending order.lists[i].length
will not exceed 104
.head
of a linked list, remove the nth
node from the end of the list and return its head.
Example 1:
Input: head = [1,2,3,4,5], n = 2
Output: [1,2,3,5]
Example 2:
Input: head = [1], n = 1
Output: []
Example 3:
Input: head = [1,2], n = 1
Output: [1]
Constraints:
sz
.1 <= sz <= 30
0 <= Node.val <= 100
1 <= n <= sz
[1, 5 * 104]
.1 <= Node.val <= 1000
nums
containing n
distinct numbers in the range [0, n]
, return the only number in the range that is missing from the array.
Example 1:
Input: nums = [3,0,1]
Output: 2
Explanation: n = 3 since there are 3 numbers, so all numbers are in the range [0,3]. 2 is the missing number in the range since it does not appear in nums.
Example 2:
Input: nums = [0,1]
Output: 2
Explanation: n = 2 since there are 2 numbers, so all numbers are in the range [0,2]. 2 is the missing number in the range since it does not appear in nums.
Example 3:
Input: nums = [9,6,4,2,3,5,7,0,1]
Output: 8
Explanation: n = 9 since there are 9 numbers, so all numbers are in the range [0,9]. 8 is the missing number in the range since it does not appear in nums.
Constraints:
n == nums.length
1 <= n <= 104
0 <= nums[i] <= n
nums
are unique.O(1)
extra space complexity and O(n)
runtime complexity?list1
and list2
.
Merge the two lists in a one sorted list. The list should be made by splicing together the nodes of the first two lists.
Return the head of the merged linked list.
Example 1:
Input: list1 = [1,2,4], list2 = [1,3,4]
Output: [1,1,2,3,4,4]
Example 2:
Input: list1 = [], list2 = []
Output: []
Example 3:
Input: list1 = [], list2 = [0]
Output: [0]
Constraints:
[0, 50]
.-100 <= Node.val <= 100
list1
and list2
are sorted in non-decreasing order.root
of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 3
Example 2:
Input: root = [1,null,2]
Output: 2
Constraints:
[0, 104]
.-100 <= Node.val <= 100
root
of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
[1, 3 * 104]
.-1000 <= Node.val <= 1000
s
, find the length of the longest substring without repeating characters.
Example 1:
Input: s = "abcabcbb "
Output: 3
Explanation: The answer is "abc ", with the length of 3.
Example 2:
Input: s = "bbbbb "
Output: 1
Explanation: The answer is "b ", with the length of 1.
Example 3:
Input: s = "pwwkew "
Output: 3
Explanation: The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
Constraints:
0 <= s.length <= 5 * 104
s
consists of English letters, digits, symbols and spaces.s
and t
of lengths m
and n
respectively, return the minimum window substring of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string " "
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC ", t = "ABC "
Output: "BANC "
Explanation: The minimum window substring "BANC " includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a ", t = "a "
Output: "a "
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a ", t = "aa "
Output: " "
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
and t
consist of uppercase and lowercase English letters.O(m + n)
time?intervals
where intervals[i] = [starti, endi]
represent the start and the end of the ith
interval and intervals
is sorted in ascending order by starti
. You are also given an interval newInterval = [start, end]
that represents the start and end of another interval.
Insert newInterval
into intervals
such that intervals
is still sorted in ascending order by starti
and intervals
still does not have any overlapping intervals (merge overlapping intervals if necessary).
Return intervals
after the insertion.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5]
Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]
Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
Constraints:
0 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 105
intervals
is sorted by starti
in ascending order.newInterval.length == 2
0 <= start <= end <= 105
intervals
where intervals[i] = [starti, endi]
, merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.
Example 1:
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
Example 2:
Input: intervals = [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.
Constraints:
1 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti <= endi <= 104
intervals
where intervals[i] = [starti, endi]
, determine if a person could attend all meetings.
Example 1:
Input: intervals = [[0,30],[5,10],[15,20]]
Output: false
Example 2:
Input: intervals = [[7,10],[2,4]]
Output: true
Constraints:
0 <= intervals.length <= 104
intervals[i].length == 2
0 <= starti < endi <= 106
intervals
where intervals[i] = [starti, endi]
, return the minimum number of conference rooms required.
Example 1:
Input: intervals = [[0,30],[5,10],[15,20]]
Output: 2
Example 2:
Input: intervals = [[7,10],[2,4]]
Output: 1
Constraints:
1 <= intervals.length <= 104
0 <= starti < endi <= 106
s
and t
, return true
if t
is an anagram of s
, and false
otherwise.
An Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once.
Example 1:
Input: s = "anagram", t = "nagaram"
Output: true
Example 2:
Input: s = "rat", t = "car"
Output: false
Constraints:
1 <= s.length, t.length <= 5 * 104
s
and t
consist of lowercase English letters.s
containing just the characters '('
, ')'
, '{'
, '}'
, '['
and ']'
, determine if the input string is valid.
An input string is valid if:
1 <= s.length <= 104
s
consists of parentheses only '()[]{}'
.A-Z
can be encoded into numbers using the following mapping:
'A' -> "1 "
'B' -> "2 "
...
'Z' -> "26 "
To decode an encoded message, all the digits must be grouped then mapped back into letters using the reverse of the mapping above (there may be multiple ways). For example, "11106 "
can be mapped into:
"AAJF "
with the grouping (1 1 10 6)
"KJF "
with the grouping (11 10 6)
(1 11 06)
is invalid because "06 "
cannot be mapped into 'F'
since "6 "
is different from "06 "
.
Given a string s
containing only digits, return the number of ways to decode it.
The test cases are generated so that the answer fits in a 32-bit integer.
Example 1:
Input: s = "12 "
Output: 2
Explanation: "12 " could be decoded as "AB " (1 2) or "L " (12).
Example 2:
Input: s = "226 "
Output: 3
Explanation: "226 " could be decoded as "BZ " (2 26), "VF " (22 6), or "BBF " (2 2 6).
Example 3:
Input: s = "06 "
Output: 0
Explanation: "06 " cannot be mapped to "F " because of the leading zero ( "6 " is different from "06 ").
Constraints:
1 <= s.length <= 100
s
contains only digits and may contain leading zero(s).s
, find the length of the longest substring without repeating characters.
Example 1:
Input: s = "abcabcbb "
Output: 3
Explanation: The answer is "abc ", with the length of 3.
Example 2:
Input: s = "bbbbb "
Output: 1
Explanation: The answer is "b ", with the length of 1.
Example 3:
Input: s = "pwwkew "
Output: 3
Explanation: The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
Constraints:
0 <= s.length <= 5 * 104
s
consists of English letters, digits, symbols and spaces.s
and t
of lengths m
and n
respectively, return the minimum window substring of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string " "
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC ", t = "ABC "
Output: "BANC "
Explanation: The minimum window substring "BANC " includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a ", t = "a "
Output: "a "
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a ", t = "aa "
Output: " "
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
and t
consist of uppercase and lowercase English letters.O(m + n)
time?s
containing just the characters '('
, ')'
, '{'
, '}'
, '['
and ']'
, determine if the input string is valid.
An input string is valid if:
1 <= s.length <= 104
s
consists of parentheses only '()[]{}'
.s
, return true
if it is a palindrome, or false
otherwise.
Example 1:
Input: s = "A man, a plan, a canal: Panama "
Output: true
Explanation: "amanaplanacanalpanama " is a palindrome.
Example 2:
Input: s = "race a car "
Output: false
Explanation: "raceacar " is not a palindrome.
Example 3:
Input: s = " "
Output: true
Explanation: s is an empty string " " after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
Constraints:
1 <= s.length <= 2 * 105
s
consists only of printable ASCII characters.s
, return the longest palindromic substring in s
.
Example 1:
Input: s = "babad "
Output: "bab "
Explanation: "aba " is also a valid answer.
Example 2:
Input: s = "cbbd "
Output: "bb "
Constraints:
1 <= s.length <= 1000
s
consist of only digits and English letters.s
, return the number of palindromic substrings in it.
A string is a palindrome when it reads the same backward as forward.
A substring is a contiguous sequence of characters within the string.
Example 1:
Input: s = "abc "
Output: 3
Explanation: Three palindromic strings: "a ", "b ", "c ".
Example 2:
Input: s = "aaa "
Output: 6
Explanation: Six palindromic strings: "a ", "a ", "a ", "aa ", "aa ", "aaa ".
Constraints:
1 <= s.length <= 1000
s
consists of lowercase English letters.strs2
in Machine 2 should be the same as strs
in Machine 1.
Implement the encode
and decode
methods.
You are not allowed to solve the problem using any serialize methods (such as eval
).
Example 1:
Input: dummy_input = [ "Hello ", "World "]
Output: [ "Hello ", "World "]
Explanation:
Machine 1:
Codec encoder = new Codec();
String msg = encoder.encode(strs);
Machine 1 ---msg---> Machine 2
Machine 2:
Codec decoder = new Codec();
String[] strs = decoder.decode(msg);
Example 2:
Input: dummy_input = [ " "]
Output: [ " "]
Constraints:
1 <= strs.length <= 200
0 <= strs[i].length <= 200
strs[i]
contains any possible characters out of 256
valid ASCII characters.numCourses
courses you have to take, labeled from 0
to numCourses - 1
. You are given an array prerequisites
where prerequisites[i] = [ai, bi]
indicates that you must take course bi
first if you want to take course ai
.
[0, 1]
, indicates that to take course 0
you have to first take course 1
.true
if you can finish all courses. Otherwise, return false
.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
1 <= numCourses <= 2000
0 <= prerequisites.length <= 5000
prerequisites[i].length == 2
0 <= ai, bi < numCourses
words
from the alien language's dictionary, where the strings in words
are sorted lexicographically by the rules of this new language.
Return a string of the unique letters in the new alien language sorted in lexicographically increasing order by the new language's rules. If there is no solution, return " "
. If there are multiple solutions, return any of them.
Example 1:
Input: words = [ "wrt ", "wrf ", "er ", "ett ", "rftt "]
Output: "wertf "
Example 2:
Input: words = [ "z ", "x "]
Output: "zx "
Example 3:
Input: words = [ "z ", "x ", "z "]
Output: " "
Explanation: The order is invalid, so return " "
.
Constraints:
1 <= words.length <= 100
1 <= words[i].length <= 100
words[i]
consists of only lowercase English letters.root
of a binary tree, return its maximum depth.
A binary tree's maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.
Example 1:
Input: root = [3,9,20,null,null,15,7]
Output: 3
Example 2:
Input: root = [1,null,2]
Output: 2
Constraints:
[0, 104]
.-100 <= Node.val <= 100
p
and q
, write a function to check if they are the same or not.
Two binary trees are considered the same if they are structurally identical, and the nodes have the same value.
Example 1:
Input: p = [1,2,3], q = [1,2,3]
Output: true
Example 2:
Input: p = [1,2], q = [1,null,2]
Output: false
Example 3:
Input: p = [1,2,1], q = [1,1,2]
Output: false
Constraints:
[0, 100]
.-104 <= Node.val <= 104
root
of a binary tree, invert the tree, and return its root.
Example 1:
Input: root = [4,2,7,1,3,6,9]
Output: [4,7,2,9,6,3,1]
Example 2:
Input: root = [2,1,3]
Output: [2,3,1]
Example 3:
Input: root = []
Output: []
Constraints:
[0, 100]
.-100 <= Node.val <= 100
root
of a binary tree, return the maximum path sum of any non-empty path.
Example 1:
Input: root = [1,2,3]
Output: 6
Explanation: The optimal path is 2 -> 1 -> 3 with a path sum of 2 + 1 + 3 = 6.
Example 2:
Input: root = [-10,9,20,null,null,15,7]
Output: 42
Explanation: The optimal path is 15 -> 20 -> 7 with a path sum of 15 + 20 + 7 = 42.
Constraints:
[1, 3 * 104]
.-1000 <= Node.val <= 1000
[0, 104]
.-1000 <= Node.val <= 1000
preorder
and inorder
where preorder
is the preorder traversal of a binary tree and inorder
is the inorder traversal of the same tree, construct and return the binary tree.
Example 1:
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]
Example 2:
Input: preorder = [-1], inorder = [-1]
Output: [-1]
Constraints:
1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder
and inorder
consist of unique values.inorder
also appears in preorder
.preorder
is guaranteed to be the preorder traversal of the tree.inorder
is guaranteed to be the inorder traversal of the tree.p
and q
as the lowest node in T
that has both p
and q
as descendants (where we allow a node to be a descendant of itself)."
Example 1:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
Output: 6
Explanation: The LCA of nodes 2 and 8 is 6.
Example 2:
Input: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
Output: 2
Explanation: The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [2,1], p = 2, q = 1
Output: 2
Constraints:
[2, 105]
.-109 <= Node.val <= 109
Node.val
are unique.p != q
p
and q
will exist in the BST.Trie()
Initializes the trie object.void insert(String word)
Inserts the string word
into the trie.boolean search(String word)
Returns true
if the string word
is in the trie (i.e., was inserted before), and false
otherwise.boolean startsWith(String prefix)
Returns true
if there is a previously inserted string word
that has the prefix prefix
, and false
otherwise.1 <= word.length, prefix.length <= 2000
word
and prefix
consist only of lowercase English letters.3 * 104
calls in total will be made to insert
, search
, and startsWith
.m x n
board
of characters and a list of strings words
, return all words on the board.
Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.
Example 1:
Input: board = [[ "o ", "a ", "a ", "n "],[ "e ", "t ", "a ", "e "],[ "i ", "h ", "k ", "r "],[ "i ", "f ", "l ", "v "]], words = [ "oath ", "pea ", "eat ", "rain "]
Output: [ "eat ", "oath "]
Example 2:
Input: board = [[ "a ", "b "],[ "c ", "d "]], words = [ "abcb "]
Output: []
Constraints:
m == board.length
n == board[i].length
1 <= m, n <= 12
board[i][j]
is a lowercase English letter.1 <= words.length <= 3 * 104
1 <= words[i].length <= 10
words[i]
consists of lowercase English letters.words
are unique.[nums[i], nums[j], nums[k]]
such that i != j
, i != k
, and j != k
, and nums[i] + nums[j] + nums[k] == 0
.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
Constraints:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
height
of length n
. There are n
vertical lines drawn such that the two endpoints of the ith
line are (i, 0)
and (i, height[i])
.
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1:
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2:
Input: height = [1,1]
Output: 1
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
head
, the head of a linked list, determine if the linked list has a cycle in it.
There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next
pointer. Internally, pos
is used to denote the index of the node that tail's next
pointer is connected to. Note that pos
is not passed as a parameter.
Return true
if there is a cycle in the linked list. Otherwise, return false
.
Example 1:
Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).
Example 2:
Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.
Example 3:
Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.
Constraints:
[0, 104]
.-105 <= Node.val <= 105
pos
is -1
or a valid index in the linked-list.O(1)
(i.e. constant) memory?head
of a linked list, remove the nth
node from the end of the list and return its head.
Example 1:
Input: head = [1,2,3,4,5], n = 2
Output: [1,2,3,5]
Example 2:
Input: head = [1], n = 1
Output: []
Example 3:
Input: head = [1,2], n = 1
Output: [1]
Constraints:
sz
.1 <= sz <= 30
0 <= Node.val <= 100
1 <= n <= sz
s
, find the length of the longest substring without repeating characters.
Example 1:
Input: s = "abcabcbb "
Output: 3
Explanation: The answer is "abc ", with the length of 3.
Example 2:
Input: s = "bbbbb "
Output: 1
Explanation: The answer is "b ", with the length of 1.
Example 3:
Input: s = "pwwkew "
Output: 3
Explanation: The answer is "wke ", with the length of 3.
Notice that the answer must be a substring, "pwke " is a subsequence and not a substring.
Constraints:
0 <= s.length <= 5 * 104
s
consists of English letters, digits, symbols and spaces.s
and t
of lengths m
and n
respectively, return the minimum window substring of s
such that every character in t
(including duplicates) is included in the window. If there is no such substring, return the empty string " "
.
The testcases will be generated such that the answer is unique.
Example 1:
Input: s = "ADOBECODEBANC ", t = "ABC "
Output: "BANC "
Explanation: The minimum window substring "BANC " includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a ", t = "a "
Output: "a "
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a ", t = "aa "
Output: " "
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
Constraints:
m == s.length
n == t.length
1 <= m, n <= 105
s
and t
consist of uppercase and lowercase English letters.O(m + n)
time?s
, return true
if it is a palindrome, or false
otherwise.
Example 1:
Input: s = "A man, a plan, a canal: Panama "
Output: true
Explanation: "amanaplanacanalpanama " is a palindrome.
Example 2:
Input: s = "race a car "
Output: false
Explanation: "raceacar " is not a palindrome.
Example 3:
Input: s = " "
Output: true
Explanation: s is an empty string " " after removing non-alphanumeric characters.
Since an empty string reads the same forward and backward, it is a palindrome.
Constraints:
1 <= s.length <= 2 * 105
s
consists only of printable ASCII characters.nums
, return the length of the longest consecutive elements sequence.
You must write an algorithm that runs in O(n)
time.
Example 1:
Input: nums = [100,4,200,1,3,2]
Output: 4
Explanation: The longest consecutive elements sequence is [1, 2, 3, 4]
. Therefore its length is 4.
Example 2:
Input: nums = [0,3,7,2,5,8,4,6,0,1]
Output: 9
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
n
nodes labeled from 0
to n - 1
. You are given an integer n and a list of edges
where edges[i] = [ai, bi]
indicates that there is an undirected edge between nodes ai
and bi
in the graph.
Return true
if the edges of the given graph make up a valid tree, and false
otherwise.
Example 1:
Input: n = 5, edges = [[0,1],[0,2],[0,3],[1,4]]
Output: true
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[1,3],[1,4]]
Output: false
Constraints:
1 <= n <= 2000
0 <= edges.length <= 5000
edges[i].length == 2
0 <= ai, bi < n
ai != bi
n
nodes. You are given an integer n
and an array edges
where edges[i] = [ai, bi]
indicates that there is an edge between ai
and bi
in the graph.
Return the number of connected components in the graph.
Example 1:
Input: n = 5, edges = [[0,1],[1,2],[3,4]]
Output: 2
Example 2:
Input: n = 5, edges = [[0,1],[1,2],[2,3],[3,4]]
Output: 1
Constraints:
1 <= n <= 2000
1 <= edges.length <= 5000
edges[i].length == 2
0 <= ai <= bi < n
ai != bi